

# Biochemische Marker des Knochenstoffwechsels bei Osteoporose

Die häufigste Störung des Knochenstoffwechsels ist die Osteoporose, gekennzeichnet durch:

- Verminderung der Knochenmasse
- Veränderung der Knochenstruktur
- Verminderung der statischen Kompetenz mit erhöhter Frakturgefahr

### Prävalenz der Osteoporose

Die Prävalenz der Osteoporose ist außerordentlich hoch:

- Frauen: bis 30% im Alter > 50 Jahre
- Männer: bis 10%

Bei 50% der Osteoporosekranken treten spinale und extraspinale Frakturen auf. Jeder Osteoporosepatient mit Fraktur ist ein Hochrisikofall für weitere Frakturen.

### Player des Knochenstoffwechsels

Die Player des Knochenstoffwechsels sind:

- Anabol: Calcium, Phosphat, Eiweiß, Vit. D3, Wachstumshormon, Calcitonin, Sexualhormone, körperliche Aktivität
- **Katabol:** Parathormon, Kortikosteroide, Schilddrüsenhormone, inflammatorische Zytokine (chronische Entzündungen), körperliche Inaktivität

# Primäre und sekundäre Osteoporose

Die **primäre Osteoporose** betrifft selten die Skelettaufbauphase, dagegen häufig die Skelettinvolutionsphase (Alter > 50 Jahre).

Die **sekundäre Osteoporose** ist die Folge verschiedener Primärerkrankungen:

- Endokrin: Hyperparathyreoidismus, Cushing-Syndrom, Hyperthyreose, Hypogonadismus
- Immunologisch: Rheumatoide Arthritis, Mb. Crohn, chronische Infektionen, lymphoproliferative Erkrankungen
- Medikamentös: Glukokortikoide, hochdosierte Schilddrüsenhormone, Laxantien, Danazol, Zytostatika
- Sonstige: Bei längerer Immobilisation sowie chronische Nieren-, Darm- und Krebserkrankungen

### Risikofaktoren für die Osteoporose sind:

Nikotin- und Alkoholabusus, Mangelernährung, frühe Menopause, Laktoseintoleranz und körperliche Inaktivität.

**Die genetisch bedingte Prädisposition** betrifft den Vitamin D-Rezeptor, das Typ1-Kollagen, die Aromatase, die Laktase und den Östrogenrezeptor 1. Weitere Informationen finden Sie in der Diagnostik-Info 181 "Genetische Prädispositionsdiagnostik der Osteoporose".

### Klinische und bildgebende Diagnostik:

Der Verdacht auf eine Osteoporose ergibt sich aus der Anamnese (Frakturen, Schmerzsyndrome, Körpergrößenverlust > 3-4cm, Risikofaktoren, weitere Erkrankungen) und der klinischen Untersuchung (Untergewicht, Hyperlordose der HWS, BWS, LWS mit radikulären Schmerzen, Klopfschmerzhaftigkeit und Stauchungsschmerz der Wirbelsäule, tiefstehender Rippenbogen).

# Das Primat bei der Erstdiagnostik der Osteoporose hat die bildgebende Diagnostik:

Hinweise ergibt die Röntgenuntersuchung der Wirbelsäule (Fisch-, Keil- Plattenwirbel).

Sichere quantitative Aussagen liefert die DXA= Dual X-ray Absorptiometrie-Bone mineral density= BMD (g/cm2)- Voraussetzung für die Feststellung des Schweregrades der Osteoporose. Weitere Möglichkeiten sind die quantitative Computertomografie (QCT) und Ultraschalluntersuchung (QUS).

### Labordiagnostik

Eine Erstdiagnostik der Osteoporose mittels Laboruntersuchungen ist nicht möglich. Die biochemischen Labormarker des Knochenstoffwechsels sind jedoch wertvoll für:

- die Ermittlung von Risikofaktoren für die Entwicklung einer Osteoporose als Voraussetzung einer entsprechenden Präventionsbehandlung,
- die Typisierung (primär, sekundär) und Charakterisierung der Ursachen einer bestehenden Osteoporose zur Auswahl der individuell optimalen Therapie
- das Therapiemonitoring

**Die Basisparameter des Knochenstoffwechsels** im Serum sind: Calcium, anorg. Phosphat und Alkalische Phosphatase (evtl. 24 Stunden Ca-Ausscheidung im Urin), ergänzt durch BKS, Blutbild, CRP, Kreatinin, GGT, Serumeiweiß und Elektrophorese, Vitamin D.

**Endokrinologische Parameter** zur Differenzierung der primären / sekundären Osteoporose und des Hypogonadismus sind:

intaktes Parathormon (EDTA-Blut), Cortisol, TSH, FSH, Östradiol, freies Testosteron (bei Männern)

# Marker für die Knochenbildung sind:

Ostase (knochenspezifisches Isoenzym der Alkalischen Phosphatase), Osteocalcin, Calcitonin

# Marker für den Knochenabbau sind:

Crosslinks (Pyrridinoline) im Urin oder Beta-CrossLaps im Serum.



### Therapiemonitoring

Da Therapieeffekte mittels bildgebender Verfahren erst nach mindestens 6 Monaten nachweisbar sind, bieten sich dafür vorher biochemische Marker an.

**Monitoring der osteoanabolen Therapie** (Calcium, Vit.D3, Sexualhormone bzw. Raloxifen [SERM]; Wachstumshormon; Teriparatid): Hier empfiehlt sich besonders die Verlaufskontrolle der Ostase.

Monitoring der antiresorptiven Behandlung (Biphosphonate): Diese kann mittels der Marker für den Knochenabbau kontrolliert werden (z.B. Abnahme der Pyridinium Crosslinks im Urin) bzw. durch den Rückgang der Calciumausscheidung im Urin.

### Material

In der nachfolgenden Tabelle finden Sie Hinweise zu den benötigten Materialien und Besonderheiten bei der Materialgewinnung.

| Parameter                                                                                                                                                                                           | Material              | Besonderheiten                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------|
| Calcium, anorganisches Phosphat, Alkalische<br>Phosphatase, CRP, Kreatinin, GGT, Serumei-<br>weiß, Elektrophorese, Cortisol, TSH, FSH,<br>Östradiol, freies Testosteron, Ostase, Beta-<br>CrossLaps | Vollblut oder Serum   | -                                                                                                             |
| Vitamin D                                                                                                                                                                                           | Vollblut oder Serum   | Vor Licht schützen. Gekühlt versenden.<br>Schnelle Serumabtrennung und Einfrieren des<br>Serums ist empfohlen |
| Calcitonin                                                                                                                                                                                          | Serum                 | Blutentnahme im Labor oder sofort nach<br>Entnahme ins Labor schicken                                         |
| Osteocalcin                                                                                                                                                                                         | Vollblut oder Serum   | Blut zur Serumgerinnung bei 2-8°C aufbewahren; dann Serum sofort bei -20°C einfrieren                         |
| Blutsenkung, Blutbild                                                                                                                                                                               | EDTA-Blut             | -                                                                                                             |
| Parathormon, intakt                                                                                                                                                                                 | EDTA-Blut             | Kühl lagern!                                                                                                  |
| Ca im Urin                                                                                                                                                                                          | 24-Stunden Sammelurin | Über 10ml 25%ige HCL-Lösung sammeln, gut durchmischen, Sammelmenge angeben                                    |
| Crosslinks (Pyrridinoline)                                                                                                                                                                          | Morgenurin            | -                                                                                                             |