


Genetik der Medikamentenverstoffwechselung (Pharmakogenetik)

Ungünstige genetische Ausstattungen des Entgiftungssystems können nicht nur unerwünschte Arzneimittelwirkungen hervorrufen, sondern auch die Entwicklung verschiedener Erkrankungen fördern. Dazu gehören Migräne, chronisches Erschöpfungssyndrom (CFS), multiple Chemikalien-Sensitivität (MCS), Tumore, Rheuma, Alzheimer und andere chronische Erkrankungen.

Biochemie

Bedingt durch fortschreitende Entwicklungen der chemischen und pharmazeutischen Industrie, aber auch höhere Belastung der Umwelt ist der menschliche Organismus einer immer größer werdenden Menge an Schadstoffen, Fremdstoffen und Medikamenten ausgesetzt. Diese müssen vom Entgiftungssystem des Körpers (vor allem der Leber) metabolisiert werden. Die exogenen Fremdstoffe sind meist lipophil, so dass sie ohne weitere Modifikation nicht ausgeschieden werden können. Dies gilt auch für viele endogen synthetisierte Stoffe, wie z.B. Hormone. Dem menschlichen Organismus steht für den Metabolismus dieser Substanzen eine spezifische Enzymausstattung zur Verfügung, die die Neutralisierung und somit die Umwandlung in ausscheidungsfähige Endprodukte ermöglicht.

Dieser Detoxifikationsprozess läuft meist in zwei Phasen ab:

Verminderter Phase I-Metabolismus führt zu verminderter Entgiftung der Ausgangsprodukte. Eine reduzierte Phase II-Entgiftung hat dagegen die Anreicherung radikaler oder toxischer Intermediärprodukte zur Folge.

In der ersten Phase werden toxische Substanzen mittels verschiedener Cytochrom P450-Enzyme reduziert, hydrolysiert und oxidiert. Die Produkte der Phase I sind zumeist kurzfristig sogar aggressiver als das primäre Toxin, so dass die schnelle Entgiftung in der Phase II essentiell ist.

In der zweiten Phase werden dann polare hydrophile Moleküle wie Glutathion, Acetat, Cystein, Sulfat, Glycin oder Glucuronat an die Metaboliten der Phase I angelagert. Erst jetzt stehen diese in wasserlöslicher Form für die biliäre bzw. renale Ausscheidung zur Verfügung. Wichtige Phase-II-Enzyme sind: Glutathion-S-Transferasen (GST) und N-Acetyltransferasen (NAT).

Diagnostik

Die Effektivität der Metabolisierung von Arzneimitteln und Fremdstoffen ist von einem optimalen Zusammenspiel der am Entgiftungsprozess beteiligten Enzyme abhängig. Genetische Polymorphismen in den Enzymen des Arzneimittelstoffwechsels können zu unerwünschten Nebenwirkungen führen oder für eine fehlende therapeutische Wirkung verantwortlich sein.

Phase I

Genvarianten in den **Cytochrom P450 (CYP)-Enzymen** CYP1A1, CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 und CYP3A5 geben Auskunft darüber, ob bestimmte Gruppen von Schadstoffen entgiftet werden können oder sich im Körper anreichern.

Phase II

Genvarianten in den **Glutathion-S-Transferasen (GST)** GST-M1, GST-T1 und GST-P1 führen zu einer schlechteren Entsorgung der äußerst radikalen Zwischenprodukte aus den Phase I-Reaktionen und vermitteln dadurch eine Disposition für Tumore, neurodegenerative Erkrankungen und Zustände, die mit oxidativem Stress assoziiert sind. Ausbleibende therapeutische Wirkungen von Medikamenten gehen damit ebenfalls einher.

Varianten im **N-Acetyltransferase 2 (NAT2)**-Gen führen in der Phase II zum "langsamen Acetylierer"-Typ. Durch Anreicherung toxischer Phase I-Metabolite kann es zu klinisch relevanten unerwünschten medikamentösen Nebenwirkungen, wie Hypersensitivität, Neuropathie oder Leukopenie kommen.

Chemotherapeutika

Eine **Thiopurin-S-Methyltransferase** (**TPMT**)-Defizienz führt zur hämatopoetischen Toxizität mit Myelosuppression nach Gabe von Azathioprin, 6-Mercaptopurin oder 6-Thioguanin. Die Häufigkeit von homozygoter TPMT-Defizienz bei Kaukasiern wird mit etwa 1:300 angegeben. Die heterozygote TPMT-Defizienz findet man bei 10% der Bevölkerung. Auch diese Gruppe hat ein größeres Risiko für Nebenwirkungen infolge der Einnahme thiopurinhaltiger Arzneimittel.

Bei der Chemotherapie mit 5-Fluorouracil (5-FU) und dessen Prodrug (Capecitabin) ist die Funktionalität der **Dihydropyrimidin-Dehydrogenase (DPYD)** als wichtigstes Abbauenzym von entscheidender Bedeutung. Varianten im DPYD-Gen führen zu einem verringerten Metabolismus und können zu unerwünschten toxischen Reaktionen führen (z.B. Myelosuppression).

Patienten, die eine genetisch bedingte veränderte Aktivität des Enzyms **Methylentetrahydrofolat-Reduktase (MTHFR)** aufweisen, haben unter Therapie mit Methotrexat ein erhöhtes Risiko für das Auftreten von Nebenwirkungen (z.B. schwere Blutbildveränderungen, Mukositis, Hyperhomocysteinämie).

Transportproteine

Das **Multidrug resistance-1 (MDR1)**-Gen kodiert für das Transportmolekül P-Glycoprotein (PGP), über das zahlreiche Medikamente aus der Zelle geschleust werden. Ein Polymorphismus im MDR1-Gen führt zur erniedrigten Aktivität des Transporters und somit zu einer höheren Resorption und Bioverfügbarkeit der betroffenen Pharmaka.

Indikationen

- In Vorbereitung entsprechender medikamentöser Therapien bzw. bei Verdacht auf Arzneimittelunverträglichkeiten
- Patienten mit Verdacht auf umweltmedizinische Erkrankungen durch berufliche oder anderweitige Schadstoffexposition

 Präventiv bei Personen mit permanenter beruflicher Schadstoffexposition (insbesondere Kanzerogene)

Material und Anforderung

2 ml EDTA-Blut

Der Transport ins Labor ist nicht zeitkritisch und kann per Postversand erfolgen. Bei genetischen Untersuchungen ist eine Einwilligungserklärung erforderlich.

Ein entsprechendes Formular stellen wir Ihnen gern zur Verfügung.

Dieses kann angefordert werden unter: (030-77001-220)

Abrechnung

Pharmakogenetische Untersuchungen werden von privaten und bei einigen Indikationen (siehe Anforderungsschein Pharmakogenetik) auch von gesetzlichen Kassen getragen. Als eine molekulargenetische Untersuchung ist die Anforderung vom Laborbudget befreit. Toxikogenetische Untersuchungen werden von privaten Kassen erstattet. Kassenversicherte können diese Leistungen als Selbstzahler anfordern.

Wichtige Enzyme für die Metabolisierung von Arzneimitteln bzw. deren Substraten sind in der folgenden Tabelle aufgeführt. Die Auswahl ist beispielhaft:

Alprenolol	CYP2D6	Fluconazol	CYP2C9, CYP2C19	Proguanil	CYP2C19
Amiodaron	CYP3A4	Fluoxetin	CYP2C9, CYP2C19, CYP2D6	Propafenon	CYP2D6
Amitriptylin	CYP2C19, CYP2D6	Fluvastatin	CYP2C9, CYP2C19	Propranolol	CYP1A2, CYP2C19, CYP2D6
Amphetamine	CYP2D6	Haloperidol	CYP1A1, CYP2D6	Ranitidin	CYP2D6
Anthracycline	MDR1	Hydralazin	NAT2	Remoxiprid	CYP2D6
Barbiturate	CYP2C19	Ibuprofen	CYP2C9	Risperidon	CYP2D6
Bufuralol	CYP2D6	Imipramin	CYP1A2, CYP2C19, CYP2D6	Ritonavir	MDR1
Caffeine	CYP1A1, CYP1A2	Isoniazid	NAT2	Saquinavir	MDR1
Captopril	CYP2D6	Lansoprazol	CYP2C19	Sertindol	CYP2D6
Carbamazepin	CYP2C19	Lidocain	CYP2D6	Sertralin	CYP2C19, CYP2C9
Carvedilol	CYP2D6	Losartan	CYP2C9	Spartein	CYP2D6
Celecoxib	CYP2C9	Lovastatin	CYP2C9, CYP2C19	Sulfamethoxazol	CYP2C9
Chinidin	CYP2D6	Maprotilin	CYP2D6	Tacrolimus	CYP3A4, CYP3A5, MDR1
Chlorpropamid	CYP2D6	Mefenaminsäure	CYP2D6	Tamoxifen	CYP2C9, CYP2C19, CYP2D6
Cimetidin	CYP2D6	Mexiletin	CYP2D6	Taxane	MDR1
Citalopram	CYP2C19, CYP3A4	Moclobemid	CYP2C19, CYP2D6	Testosteron	CYP2C9
Clomipramin	CYP2C19, CYP2D6	Modafinil	CYP2C19	Thioridazin	CYP2D6
Clonazepam	NAT2	Morphin	CYP2D6	Timolol	CYP2D6
Clozapin	CYP1A1, CYP1A2	Naproxen	CYP1A2	Tolbutamid	CYP2C9
Cocain	CYP2D6	Nitrazepam	NAT2	Torasemid	CYP2C9
Codein	CYP2D6	Nortriptylin	CYP2D6	Tramadol	CYP2D6
Coumadin	CYP2C9	Omeprazol	CYP2C19, CYP2D6	Trifluperidol	CYP2D6
Cyclosporin A	CYP3A4, CYP3A5	Paclitaxel (Taxane)	MDR1, CYP2C8	Trimethoprim	CYP2C9, CYP2C19
Desipramin	CYP2D6	Pantoprazol	CYP2C19	Tropisetron	CYP2D6
Dextromethorphan	CYP2D6	Paroxetin	CYP2D6	Venlafaxin	CYP2D6
Diazepam	CYP2C19	Perphenazin	CYP2D6	Verapamil	CYP1A2
Diclofenac	CYP2C9	Phenobarbital	CYP2C19	Vincaalkaloide	MDR1
Diltiazem	CYP2D6	Phenylbutazon	CYP2C19, CYP2C9	Warfarin	CYP2C9, CYP2C19
Encainid	CYP2D6	Phenytoin	CYP2C19, CYP2D6	Zolmitriptan	CYP1A2
Estradiol	CYP1A2	Piroxicam	CYP2C9	Zuclopenthixol	CYP2D6
Fentanyl	CYP2D6, CYP3A4	Prednisolon	CYP2C19		
Flecainid	CYP2D6	Procainamid	NAT2		

Xenobiotika

Glutathion-S-Transferasen (GST) spielen eine Schlüsselrolle bei der zellulären Detoxifikation von Karzinogenen und Xenobiotika. Genvarianten der GSTs führen zu einer schlechteren Entsorgung der äußerst radikalen Zwischenprodukte aus den Phase I-Reaktionen. Die Untersuchung auf genetische Varianten ist daher angeraten bei verstärkter Schadstoffexposition, insbesondere Kanzerogene. Eine Assoziation von bestimmten Genotypen mit einigen Tumorarten und neurodegenerativen Erkrankungen konnte bereits gezeigt werden.

GST-T1	Detoxifiziert u.a. Kanzerogene aus Zigarettenrauch, ist aber auch an der Bildung toxischer Metabolite aus z.B. Dichlormethan beteiligt. Assoziation mit Brust-krebs. Etwa 20 % der kaukasischen Bevölkerung zeigen einen kompletten Funktionsverlust des Enzyms.
GST-M1	Entgiftet u.a. Epoxide. Assoziation mit Brust- und Blasenkrebs. Etwa 50 % der kaukasischen Bevölkerung zeigen einen kompletten Funktionsverlust des Enzyms.
GST-P1	Entgiftet zahlreiche elektrophile Metaboliten.

Literatur

- Bundesgesundheitsblatt Gesundheitsforsch Gesundheitsschutz (2004): Genetische Polymorphismen von Fremdstoff-metabolisierenden Enzymen und ihre Bedeutung für die Umweltmedizin. 47:1115-1123.
- Schwab, M. et al. (2002): Pharmakogenetik der Zytochrom-P-450-Enzyme. Bedeutung für Wirkungen und Nebenwirkungen von Medikamenten. Deutsches Ärzteblatt 8 (Jg 99).
- Innocenti, F. & Ratain, M.J. (2002): Update on pharmacogenetics in cancer chemotherapy. Eur J Cancer 38: 639-644.